Categorical Abstract Algebraic Logic: Subdirect Representation of Pofunctors

نویسنده

  • George Voutsadakis
چکیده

Pałasińska and Pigozzi developed a theory of partially ordered varieties and quasi-varieties of algebras with the goal of addressing issues pertaining to the theory of algebraizability of logics involving an abstract form of the connective of logical implication. Following their lead, the author has abstracted the theory to cover the case of algebraic systems, systems that replace algebras in the theory of categorical abstract algebraic logic. In this note, an order subdirect representation theorem for partially ordered algebraic systems is proven. This is an analog of the Order Subdirect Representation Theorem of Pałasińska and Pigozzi, which, in turn, generalizes the well-known Subdirect Representation Theorem of Universal Algebra.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Categorical Abstract Algebraic Logic: Subdirect Representation for Classes of Structure Systems

The notion of subdirect irreducibility in the context of languages without equality, as presented by Elgueta, is extended in order to obtain subdirect representation theorems for abstract and reduced classes of structure systems. Structure systems serve as models of firstorder theories but, rather than having universal algebras as their algebraic reducts, they have algebraic systems in the sens...

متن کامل

Categorical Abstract Algebraic Logic: Closure Operators on Classes of PoFunctors

Following work of Pa lasińska and Pigozzi on partially ordered varieties and quasi-varieties of universal algebras, the author recently introduced partially ordered systems (posystems) and partially ordered functors (pofunctors) to cover the case of the algebraic systems arising in categorical abstract algebraic logic. Analogs of the ordered homomorphism theorems of universal algebra were shown...

متن کامل

Categorical Abstract Algebraic Logic: Ordered Equational Logic and Algebraizable PoVarieties

A syntactic apparatus is introduced for the study of the algebraic properties of classes of partially ordered algebraic systems (a.k.a. partially ordered functors (pofunctors)). A Birkhoff-style order HSP theorem and a Mal’cev-style order SLP theorem are proved for partially ordered varieties and partially ordered quasivarieties, respectively, of partially ordered algebraic systems based on thi...

متن کامل

Residually Small Varieties Without Rank

Subdirect representations are investigated in varieties which are defined by operations of not necessarily finite arity. It is shown that, in this context, Birkhoff’s Subdirect Representation Theorem does not hold. However, a class of unranked varieties is identified which admit subdirect representations by subdirectly irreducibles and then even are residually small.

متن کامل

Categorical Abstract Algebraic Logic: Partially Ordered Algebraic Systems

An extension of parts of the theory of partially ordered varieties and quasivarieties, as presented by Paaasińska and Pigozzi in the framework of abstract algebraic logic, is developed in the more abstract framework of categorical abstract algebraic logic. Algebraic systems, as introduced in previous work by the author, play in this more abstract framework the role that universal algebras play ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006